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ABSTRACT
This paper focuses on the computation time of evolution-
ary algorithms. First, some exact expressions of the mean
first hitting times of general evolutionary algorithms in fi-
nite search spaces are obtained theoretically by using the
properties of Markov chain. Then, by introducing drift anal-
ysis and applying Dynkin’s Formula, the general upper and
lower bounds of the mean first hitting times of evolutionary
algorithms are given rigorously under some mild conditions.
These results obtained in this paper, and the analytic meth-
ods used in this paper, are widely valid for analyzing the
computation time of evolutionary algorithms in any search
space(finite or infinite)as long as some simple technique pro-
cesses are introduced.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous; I.2.8 [Problem Solving, Control Meth-
ods, and Search]: Complexity—computation time

General Terms
Algorithms

Keywords
evolutionary algorithms, computation time, drift analysis,
Dynkin’s formula

1. INTRODUCTION
The research for the computation time of evolutionary al-

gorithms (EAs for brevity) used to solve optimization prob-
lems is an important topic in the foundations and theory
of EAs, which reveals the number of expected generations
needed to reach an optimal solution [1, 2]. In the last over
ten years, some progresses have been made towards this di-
rection: Bäck [3] and Mühlenbein [4] studied the time com-
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plexity of EAs based on the simple ONE-MAX problem.
Rudolph [5] gave a comprehensive survey of the theoretical
works up to 1997 and provided an O(n log n) upper bound
for the (1 + 1)−EA using the 1-bit-flip mutation for ONE-
MAX problem. Garnier et al [6] compared two different
mutations in (1 + 1)−EAs when they are applied to the
ONE-MAX problem, and obtained the different bounds on
the EA’s average computation time, respectively. Droste et
al [7, 8] improved these results and generalized them to any
linear binary functions for the (1 + 1)−EA. Some long path
problems in unimodal functions have also proved to be solv-
able in polynomial time [9, 10]. He and Yao, who have done
a series of works about the computation time and the time
complexity for several kinds of EAs and different problems
[11− 16], are specially deserved to be mentioned.

Markov chain models have been used widely in the the-
oretical analysis of EAs [17− 19]. Although drift analysis
introduced from stochastic process is a very useful technique
in estimating computation time and time complexity for the
stochastic algorithms [20, 11, 13− 16], most of results ob-
tained till now almost focus on some simple evolutionary al-
gorithms and optimization problems, such as (1 + 1)−EAs,
(N +N)−EAs, ONE-MAX problem, linear functions, etc. It
is important for us to develop other mathematical methods
and tools to analyze rigorously more complex EAs based on
more complex problems so that insights can be gained into
them.

As we know that the first hitting time of a Markov chain
plays an important role in analyzing the computation time
and time complexity of EAs. And some initial successes
have been made in this topic. However, few rigorous re-
sults are available to analyze the time complexity and the
computation time of EAs. He and Yao [13] built a gen-
eral framework for analyzing the average first hitting time
of EAs based on their absorbing Markov chain models. In
their framework, the time complexity for some typical EAs
based on some model problems are traversed. He and Yao’s
works [11− 16] provided some good and valuable ideas to
make further researches on the computation time and time
complexity of EAs. But, it is still necessary to do further
researches for obtaining some thorough and profound theo-
retical results, and furthermore, for improving on the former
works.

In this paper we consider a Markov chain associated with
a general EA based on a finite search space. By introduc-
ing the definitions of the first hitting times of EAs, some
exact expressions of the mean first hitting times of EAs are
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obtained according to the definitions. The other results in
this paper concern with the upper and lower bounds of the
mean first hitting times of EAs by applying Dynkin’s For-
mula and some advanced analytic techniques. In fact, it is
a tough task for us to estimate the upper and lower bounds
of the mean first hitting times of EAs by using our limited
analytic techniques and available Markov chain theory [21].

The remaining parts of this paper are organized as follows.
In section 2, we describe the formalization models of EAs. In
section 3, we obtain some exact expressions of the mean first
hitting times of EAs. In section 4, we give the upper and
lower bounds of the mean first hitting times of EAs under
some mild conditions by using different analytic techniques,
respectively. In the final section, we conclude the paper
with a short discussion and moreover, present some key open
problems which are necessary to be solved urgently in the
field of the time complexity of EAs in the future.

2. DESCRIPTION OF THE MODEL
In this paper, we consider the following optimization prob-

lem: Given an objective function f : S → R, where S is a
finite search space and R is the real line, a maximization
problem is to find a x∗ ∈ S such that

f(x∗) = max{f(x) : x ∈ S}. (1)

We call x∗ an optimal solution and write fmax = f(x∗) for
convenience. If there are more than one optimal solution,
then denote the set of all optimal solutions by S∗, and call
it an optimal solution set.

The formalization model of evolutionary algorithms with
the population size N for solving the optimization problem
(1) can be generally described as follows:

step 1. initialize, either randomly or heuristically, an
initial population of N individuals, denoted it by ξ0 = (ξ0(1),
· · · , ξ0(N)), where ξ0(i) ∈ S, i = 1, · · · , N , and let k = 0.

step 2. generate a new (intermediate) population by
adopting general genetic operators (or any other stochastic
operators for generating offsprings), and denote it by ξk+1/2.

step 3. select and reproduce N individuals from popu-
lations ξk+1/2 and ξk according to certain select strategy or
mechanism, and obtain the next population ξk+1, then go
to step 2.

In the above algorithm, we write f(ξk) = max{f(ξk(i)):
1 ≤ i ≤ N}, ∀k = 0, 1, 2, · · · .

It is well known that {ξk; k ≥ 0} is a Markov chain with
the state space SN because the state of the (k + 1) −
th generation often depends only on the k − th generation
[1]. The concept of first hitting time of a Markov chain
has been widely used in various areas stretching from search
problems. In this paper, we will consider the mean first
hitting time of general EAs described as above. That is to
say, we will research the number of generations for the EA to
find an optimal solution for the first time under the context
of expectation.

Let d′(·) be a given non-negative test function defined
on S. Usually, d′ is taken as the distance between the indi-
vidual and the optimal solution(or optimal solution set). For
example, we can define it by fmax − f(·). For a population

ξ = (ξ(1), · · · , ξ(N)) ∈ SN , define

d(ξ) = min{d′(ξ(i)) : i = 1, · · · , N}. (2)

Then d is also a non-negative test function defined on
SN and it is used to measure the distance between the pop-
ulation and the optimal population (or optimal pop-
ulation set). In this paper, the optimal populations refer
to those which include at least an optimal solution, while
the optimal population set consists of all the optimal pop-
ulations. The optimal population set associated with d is
defined by

(SN
d )∗ = {ξ ∈ SN : d(ξ) = 0}. (3)

For convenience, we write C∗ = (SN
d )∗.

The one-step drift of stochastic sequence {ξk; k ≥ 0}
at time k is generally defined by

4(d(ξk)) = d(ξk+1)− d(ξk). (4)

The one-step drift describes the local performance of EAs
[22]. By using some techniques of the stochastic process, we
can analyze the mean first hitting time on C∗ under some
mild conditions imposed on the one-step drift.

Let N ≥ 1 be a fixed integer, which represents the pop-
ulation size of EAs. Write Z+ = {1, 2, 3 · · · }. Throughout
this paper, we always assume that the stochastic process,
{ξk; k ≥ 0}, associated with an EA, is a finite homoge-
neous Markov chain. Let E denote the expectation op-
erator and IA(·) an index function on the set A.

In the following section, we will give some exact expres-
sions of the mean first hitting times of EAs.

3. SOME EXACT EXPRESSIONS OF THE
MEAN FIRST HITTING TIMES

Let {ξk; k ≥ 0} be a homogeneous Markov chain from
probability space (Ω,F , P ), which can support all random-
ization used in this paper, to state space SN associated
with an EA described in section 2. Suppose that there are
m(Usually, m = 2n, where n is the length of binary bit
string) feasible solutions in search space S, thus we can or-
der all states in SN by s1, s2, · · · , smN . Let PmN×mN =
(pij)mN×mN (where pij is the translation probability from

state si to state sj , i, j = 1, · · · , mN ) be the transition
probability matrix and q = (q1, · · · , qmN ) be the start-
ing distribution, that is, P{ξ0 = sj} = qj , j = 1, 2, · · · , mN .

In the beginning, we recall the definition of the optimal
population. A population, ξ∗ = (ξ∗(1), · · · , ξ∗(N)), is called
an optimal population in SN , if ξ∗(j) ∈ S∗ for at least one
j(j ∈ {1, · · · , N}). The first hitting time on ξ∗ can be
defined by

τ(ξ∗) = min{k ≥ 0 : ξk = ξ∗}. (5)

For any given optimal population ξ∗, there exists i(i ∈
{1, · · · , mN}) such that si = ξ∗. Let us write Pξ∗ the (mN−
1) × (mN − 1) matrix obtained from PmN×mN by deleting
those elements of its the i−th column and the i−th row.
Also let qξ∗ = (q1, · · · , qi−1, qi+1, · · · , qmN ).

Let I denote the (mN − 1) × (mN − 1) identity matrix
and let 1 = (1, 1, · · · , 1)′ be the (mN − 1)-dimension vector.
Then we have

Theorem 1. Let τ(ξ∗) be the number of generations for
the EA to find the optimal population ξ∗ for the first time.
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For the optimal population ξ∗, if I− Pξ∗ is invertible, then

E[τ(ξ∗)] = qξ∗(I− Pξ∗)
−11. (6)

Proof. By Markov property of {ξk; k ≥ 0}, for any l ≥ 1,
one has

P{τ(ξ∗) ≥ l} = P{ξ0 6= ξ∗, ξ1 6= ξ∗, · · · , ξl−1 6= ξ∗}
=

∑

y0 6=ξ∗,y1 6=ξ∗,··· ,yl−1 6=ξ∗
P{ξ0 = y0, · · · , ξl−1 = yl−1}

=
∑

y0 6=ξ∗,y1 6=ξ∗,··· ,yl−1 6=ξ∗
P{ξ0 = y0} × P{ξ1 = y1|ξ0 = y0}

× P{ξ2 = y2|ξ1 = y1} × · · · × P{ξl−1 = yl−1|ξl−2 = yl−2}
= qξ∗P

l−1
ξ∗ 1.

Hence, we have

E[τ(ξ∗)] =
∑

k≥0

k × P{τ(ξ∗) = k}

=
∑

l≥1

P{τ(ξ∗) ≥ l}

= qξ∗ ·
∑

l≥1

P l−1
ξ∗ · 1

= qξ∗(I− Pξ∗)
−11.

This is our assertion.

More generally, suppose that C∗ = {si1 , · · · , sir}(⊂ SN ).
We can define the first hitting time on C∗ by

τ(C∗) = min{k ≥ 0 : ξk ∈ C∗}. (7)

Similarly, let us denote PC∗ the (mN −r)× (mN −r) matrix
obtained from PmN×mN by deleting those elements of its
the i1-th ,· · · , the ir-th columns and the i1-th ,· · · , the ir-
th rows, and qC∗ = (q1, · · · , qi1−1, qi1+1, · · · , qir−1, qir+1,
· · · , qmN ). Then we also have

Theorem 2. Let τ(C∗) be the number of generations for
the populations of the EA to enter the optimal population
set C∗ for the first time. If I− PC∗ is invertible, then

E[τ(C∗)] = qC∗(I− PC∗)
−11, (8)

where I is a (mN − r)× (mN − r) identity matrix and 1 =
(1, 1, · · · , 1)′ is a (mN − r)-dimension vector.

The proof of Theorem 2 is almost similar to Theorem 1.
We omit it here.

Remark 1 In fact, for any set A ⊂ SN , we can define
the first hitting times on A, and at this time Theorem 2
still holds. In addition, although each optimal solution cor-
responds to many optimal populations which contain this
optimal solution, Theorem 1 is still without losing meaning
in theory and practice. Usually, the definition (5) is more
suitable for (1 + 1) EAs than the definition (7), while the
latter is often used in the case of the population size N > 1.

In the above Theorems, we only consider the uncondi-
tional expectations of random variables τ(ξ∗) and τ(C∗),
which can be regarded as the expressions of the mean first
hitting times for EAs to find an optimal population under
any initialization. By using the same method as the above,

we can obtain the expressions of the conditional expectations
E[τ(ξ∗)|ξ0 = X] and E[τ(C∗)|ξ0 = X], for some X ∈ SN ,
respectively.

For any optimal population ξ∗ and X ∈ SN (X 6= ξ∗),
there exist i and j(i, j ∈ {1, · · · , mN})such that ξ∗ = si and
X = sj . Let vX,ξ∗ be the (mN − 1)-dimension vector ob-
tained from the j−th row of PmN×mN by deleting the i−th
element of this row. Pξ∗ , I and 1 are the same as Theorem
1. Then we have the following theorem.

Theorem 3. Let τ(ξ∗) be the number of generations for
the EA to find the optimal population ξ∗ for the first time.
For the optimal population ξ∗, if Pξ∗ and I−Pξ∗ are invert-
ible, then

E[τ(ξ∗)|ξ0 = X] =





vX,ξ∗(Pξ∗)
−1(I− Pξ∗)

−11, X 6= ξ∗

0, X = ξ∗

(9)

Proof. By Markov property of {ξk; k ≥ 0}, for any l ≥ 1
and X 6= ξ∗, we have

P [τ(ξ∗) ≥ l|ξ0 = X]

=
P (ξ0 = X, ξ1 6= ξ∗, · · · , ξl−1 6= ξ∗)

P (ξ0 = X)

=
∑

y1 6=ξ∗,··· ,yl−1 6=ξ∗

P (ξ0 = X, ξ1 = y1, · · · , ξl−1 = yl−1)

P (ξ0 = X)

=
∑

y1 6=ξ∗,··· ,yl−1 6=ξ∗
P (ξ1 = y1|ξ0 = X)× P (ξ2 = y2|ξ1 = y1)

× · · · × P (ξl−1 = yl−1|ξl−2 = yl−2)

= vX,ξ∗P
l−2
ξ∗ 1.

Hence, by using the same technique as Theorem 1, it is easy
for us to get

E[τ(ξ∗)|ξ0 = X] =





vX,ξ∗(Pξ∗)
−1(I− Pξ∗)

−11, X 6= ξ∗

0, X = ξ∗

Similarly, for X = sj and C∗ = {si1 , si2 , · · · , sir}, let
vX,C∗ be the (mN − r)−dimension vector obtained from the
j−th row of PmN×mN by deleting those the i1-th, the i2-th,
· · · , the ir-th elements of this row. PC∗ , I and 1 are the
same as Theorem 2. Similarly, we have the following theo-
rem.

Theorem 4. Let τ(C∗) be the number of generations for
the populations of the EA to enter the set C∗ for the first
time. If PC∗ and I− PC∗ are invertible, then

E[τ(C∗)|ξ0 = X] =





vX,C∗(PC∗)
−1(I− PC∗)

−11, X /∈ C∗

0, X ∈ C∗

(10)

1411



The proof of Theorem 4 is similar to Theorem 3. We also
omit it here.

Remark 2 For the EA based on general search space S,
we also have the expressions similar to the above theorems,
in which the operators will substitute the corresponding ma-
trixes, respectively.

Although the above results have great significance in the-
ory, the estimation of the upper and lower bounds is more
useful in practice. Therefore, we will further consider the
upper and lower bounds of the mean first hitting times on
C∗ in the following section.

4. THE UPPER AND LOWER BOUNDS OF
THE MEAN FIRST HITTING TIMES

Note that the sequence {d(ξk) : k = 0, 1, 2, · · · } generated
by the EA is also a homogeneous Markov chain, where d(·)
is defined in (2). By (7), the first hitting times on C∗ are
defined by

τ(C∗) = min{k ≥ 0 : ξk ∈ C∗} = min{k ≥ 0 : d(ξk) = 0}.
(11)

We will impose some constraints on the one-step drift
4(d(ξk)) in order to obtain the upper and lower bounds of
E[τ(C∗)|ξ0 = X]. Some other marks and definitions should
be stated aforehand.

Let {Fξ
n, n ≥ 0} be the σ-algebra given by ξ0, ξ1, · · · , ξn.

By Proposition 3.4.4 in [21], τ(C∗) is a stopping time with
respect to σ−algebra sequence {Fξ

n : n ≥ 0}.
For any C ⊂ SN , define σC = min{n ≥ 1 : ξn ∈ C}, which

is the first return time on C. Dynkin’s Formula was
usually used to study the upper bound of the mean first
return time by controlling the one-step average increment.
In this paper, we will use it to estimate the upper and lower
bounds of τ(C∗).

For stopping time τ(C∗) (τ for brevity in the following)
defined in (11), we write

τn = min{τ, n, inf{k ≥ 0 : d(ξk) ≥ n}}, ∀n ∈ Z+.

Obviously, τn is also a stopping time and furthermore we
have

Lemma 1. (Dynkin’s Formula [21]) For any X ∈ SN

and n ∈ Z+,

E[d(ξτn)|ξ0 = X]

= d(X) + E[

τn∑
i=1

(E[d(ξi)|Fξ
i−1]− d(ξi−1))|ξ0 = X].(12)

Remark 3 If d is a test function from SN → [0,∞),
then (12) still holds for the stopping time τn = min{τ, n}
when n is large enough. In fact, the test function d(·) defined
in (2) is non-negative bounded when the state space SN is
finite. Otherwise, one little restriction, sup

X∈SN

d(X) < ∞,

must be imposed on it.

In the following, we must state another related result in
[21], which is

Lemma 2. (Theorem 11.3.4 in [21]) Suppose that there
exist some constant b < ∞ and an extended real-valued func-

tion d : SN → [0,∞] such that

E[d(ξ1)− d(ξ0)|ξ0 = X] ≤ −1 + bIC(X), X ∈ SN

for some set C ⊂ SN . Then

E[σC |ξ0 = X] ≤ d(X) + bIC(X).

According to Lemma 2, we can get the following conclu-
sion immediately.

Theorem 5. Let τ be the number of generations for the
populations of the EA to enter the optimal population set C∗

for the first time. Suppose d satisfies the following condition

E[d(ξ1)−d(ξ0)|ξ0 = X] ≤ −a+ bIC∗(X), X ∈ SN , (C1)

for the constants a > 0 and b < ∞. Then

E[τ |ξ0 = X]




≤ d(X)/a, X ∈ SN\C∗

= 0, X ∈ C∗

Proof. Note that, if X ∈ C∗, then τ = 0; if X 6∈ C∗,
then σC∗ = τ . Regarding d(·)/a as the function d(·) of
lemma 2, we can get the desired result immediately.

In the following, we still put our interests on the special
set C∗ and give the lower bound for the mean first hitting
time on C∗. Dynkin’s Formula and some conditions on one-
step drift are needed. Our conclusion is

Theorem 6. Let τ be the number of generations for the
populations of the EA to enter the optimal population set C∗

for the first time. Suppose d satisfies that

−a2+a2IC∗(X) ≤ E[d(ξ1)−d(ξ0)|ξ0 = X] ≤ −a1+a1IC∗(X)
(C2)

for any X ∈ SN and some positive constants a1, a2. Then

E[τ |ξ0 = X]




≥ d(X)/a2, X ∈ SN\C∗

= 0, X ∈ C∗

Proof. Since {ξk; k ≥ 0} is homogenous Markov chain,
as implies that if E[d(ξ1)− d(ξ0)|ξ0 = X] satisfies (C1) and
(C2), then E[d(ξk+1) − d(ξk)|ξk = x] satisfies (C1) and
(C2) for all k ≥ 1. Note that if ω ∈ {ξk = X}, then we
have

E[d(ξk+1)|Fξ
k ](ω) = E[d(ξk+1)|ξk = X].

Write Qk =
⋃

X∈SN\C∗
{ω : ξk = X}, then we have

Ed(ξk+1) = E[E[d(ξk+1)|ξk]]

=

∫

Qk

+

∫

Ω\Qk

E[d(ξk+1)|ξk]dP

≤
∫

Qk

(d(ξk)− a1)dP +

∫

Ω\Qk

d(ξk)dP

= Ed(ξk)− a1P (Qk).

By induction on k, we have

0 ≤ Ed(ξk+1) ≤ Ed(ξ0)−
k∑

i=0

a1P (Qk), ∀k ≥ 1.
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Hence, we must have

P (Qk) → 0 as k →∞. (13)

Since the state space is finite, (13) implies that

Ed(ξk) → 0 as k →∞.

So

E[d(ξk)|ξ0 = X] =

∫
ξ0=X

d(ξk)dP

P (ξ0 = X)
≤ Ed(ξk)

P (ξ0 = X)
→ 0 (14)

as k → ∞. By the hypotheses and Dynkin’s Formula, we
know that if X ∈ SN\C∗, then we have

a2E[τn|ξ0 = X] ≥ d(X)−E[d(ξτn)|ξ0 = X]

≥ d(X)−E[d(ξτ )|ξ0 = X]−E[d(ξn)|ξ0 = X]

= d(X)−E[d(ξn)|ξ0 = X], ∀n ∈ Z+.

Note that τn ↑ τ(n → ∞). By the Monotone Convergence
Theorem and (14), it follows that

E[τ |ξ0 = X] ≥ d(X)/a2, X ∈ SN\C∗.
In addition, it is easy to know that E[τ |ξ0 = X] = 0, for
X ∈ C∗, from the definition of τ .

This completes the proof.

From the proof of Theorem 6, we can get

Proposition 1. If there exists some set C ⊂ SN such
that test function d satisfies

−a2 + b2IC(X) ≤ E[d(ξ1)− d(ξ0)|ξ0 = X] ≤ −a1 + b1IC(X)
(C3)

for any X ∈ SN and some constants b1 ≥ a1 > 0, a2 > 0
and b2 < ∞. Then

P (Ω\Qk(C)) → a1/b1, k →∞,

where Qk(C) =
⋃

X∈SN\C

{ω : ξk = X}.

Remark 4 We can use a result in [21] to explain condi-
tion C1. According to [21], if E[d(ξ1)−d(ξ0)|ξ0 = X] ≥ 0 for
X ∈ SN\C∗, then the mean first hitting times, E[τ |ξ0 = X],
are infinite for X ∈ SN\C∗. Hence, condition C1 is neces-
sary for upper bound. Condition C2 says that if EA reaches
the optimal population set at the nth step, then the next
step, the n + 1 step, EA still remains at the optimal set;
moreover, in order to get lower bound, the one-step drift
must be bounded. Hence, C2 is reasonable.

Remark 5 Proposition 1 tells us that under the con-
dition (C3), the probability which ξk reaches the set C
tends to a fixed constant a1/b1 as the number of genera-
tions k → ∞. Note that Proposition 1 does not imply the
convergence of EAs under the sense of probability if a1 6= b1.

In fact, We can also adopt the other method to get the
upper and lower bounds under the condition (C2), in which
the upper bound can be obtained similar to Theorem 5 and
the lower bound is analyzed as follows. As though our analy-
sis is somewhat similar to He & Yao’s [11− 13]. But, strictly
speaking, people hardly have a good choice except using the
Dynkin’s Formula if they just apply the drift properties to
estimate the mean first hitting time of EAs. Otherwise, the
analytic process will not be rigorous.

By using the method different from Theorem 6, we esti-
mate the lower bound as follows.

For any X ∈ SN , let

Ak(X) = {ω : ξk = X}

and

Tk =
∑

X∈C∗
Ak(X) = Ω\Qk(C∗).

It is easy to check that the condition (C2) implies that

E[d(ξk)− d(ξk+1)|ξk](ω) = 0, ω ∈ Tk, (15)

and

a1 ≤ E[d(ξk)− d(ξk+1)|ξk](ω) ≤ a2, ω ∈ Ω\Tk. (16)

By Markov property, we have

E[d(ξk)|ξ0](ω)

= E[E[d(ξk−1) + (d(ξk)− d(ξk−1))|ξk−1]|ξ0](ω)

=
∑

X∈SN

∫
A0(X)

E[d(ξk−1) + (d(ξk)− d(ξk−1))|ξk−1]dP

P (A0(X))

·IA0(X)(ω).

Hence, for any X 6∈ C∗, we can check that

E[d(ξk)|ξ0 = X]

=

∫
A0(X)

E[d(ξk−1) + (d(ξk)− d(ξk−1))|ξk−1]dP

P (A0(X))

=

∫
A0(X)

⋂
Tk−1

E[d(ξk−1) + (d(ξk)− d(ξk−1))|ξk−1]dP

P (A0(X))

+

∫
A0(X)

⋂
Qk−1

E[d(ξk−1) + (d(ξk)− d(ξk−1))|ξk−1]dP

P (A0(X))
.

By (15) and (16), for any X 6∈ C∗, we have

∫
A0(X)

⋂
Qk−1

(d(ξk−1)− a2)dP

P (A0(X))

≤ E[d(ξk)|ξ0 = X]

≤

∫
A0(X)

⋂
Qk−1

(d(ξk−1)− a1)dP

P (A0(X))
.
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But, for any X 6∈ C∗ and the constant c > 0

E[d(ξk−1)− c|ξ0 = X]

=

∫
A0(X)

(d(ξk−1)− c)dP

P (A0(X))

=

∫
A0(X)

⋂
Tk−1

(d(ξk−1)− c)dP

P (A0(X))

+

∫
A0(X)

⋂
Qk−1

(d(ξk−1)− c)dP

P (A0(X))

=
−c

P (A0(X))
· P (A0(X) ∩ Tk−1))

+

∫
A0(X)

⋂
Qk−1

(d(ξk−1)− c)dP

P (A0(X))
.

Therefore, for any X 6∈ C∗, we have

E[d(ξk)|ξ0 = X]

≥ E[d(ξk−1)− a2|ξ0 = X] +
a2

P (A0(X))
· P (A0(j) ∩ Tk−1)

= E[d(ξk−1)|ξ0 = X]− a2 +
a2

P (A0(X))
· P (A0(X) ∩ Tk−1)

= E[d(ξk−1)|ξ0 = X]

− a2

P (A0(X))
[P (A0(X))− P (A0(X) ∩ Tk−1))]

= E[d(ξk−1)|ξ0 = X]− a2

P (A0(X))
[P{ω : ξ0 = X, τ ≥ k}]

= E[d(ξk−1)|ξ0 = X]− a2 ·E[Iτ≥k(ω)|ξ0 = X].

By induction on k, for any X 6∈ C∗, we have

E[d(ξk)|ξ0 = X] ≥ d(X)− a2

k∑
n=1

E[Iτ≥n(ω)|ξ0 = X]. (17)

Since E[τ |ξ0 = X] < ∞ by Theorem 5, then E[τ |ξ0 = X] =
∞∑

n=1

E[Iτ≥n(ω)|ξ0 = X]. Combining with (14), for any X 6∈
C∗, we get from (17)

a2 ·E[τ |ξ0 = X] ≥ d(x).

On the other hand, it is easy to know that

E[τ |ξ0 = X] = 0, ∀X ∈ C∗.

Hence

E[τ |ξ0 = X]




≥ d(X)/a2, X ∈ SN\C∗

= 0, X ∈ C∗

This completes the proof. 2

In the above analysis, we only use the condition (C2). In
fact, it is easy to find that the condition (C2) implies the
condition (C1) when we take b as a in the condition (C1).
In order to obtain the lower bound of E[τ |ξ0 = X], we do
not only need to limit the drift speed(i.e. the left inequality
of the condition (C2)) but also keep up the certain positive
drift(i.e. the right inequality of the condition (C2)) such
that the convergence can be ensured.

Remark 6 In specialty, we claim that the results ob-
tained in section 4 are true for EAs to solve optimization
problems based on general search space S provided the test
function d(·) defined on SN is imposed little restriction, i.e.
sup

X∈SN

d(X) < ∞, where a real-valued objective function f

is only claimed bounded from above for the maximization
problem or bounded from below for the minimization prob-
lem.

5. CONCLUSIONS AND DISCUSSIONS
This paper has given some general results about the time

complexity of EAs, which have great importance in theory
and practice. More important, some analytic techniques
and methods used in this paper, which may supply the re-
searchers in the area of EA-theory the uses of references, are
foundational and even essential for investigating the time
complexity problems in EAs.

This paper has shown that Markov chain is a convenient
model which can be used to describe the EAs and that drift
analysis is a practical means which is useful to estimate the
computation time of EAs. In the meantime, it has also
implied that some more profound results about the compu-
tation time of EAs can be derived by using the drift analysis
and other tools in stochastic process theory.

As mentioned in [15], drift analysis reduces the behavior
of EAs in a higher dimensional population space SN into
a super-martingale on the one-dimensional space by the in-
troduction of a distance function for the population space.
This makes the theoretical analysis much simpler than an-
alyzing the original Markov chain associated with the EAs.
The key point in applying drift analysis is to define a good
test function on the population space SN .

It can be seen from this paper that the application of
Dynkin’s Formula is a key technique in order to obtain a
rigorous theoretical analysis, which has not been used in
the previously related works.

The application of drift analysis to studying computation
time and time complexity of EAs is still at its early days.
A number of problems are still open: How to describe the
relation between the time complexity and the space com-
plexity(which is related to both problem size and popula-
tion size.)? In a given kind of problems, how to analyze the
time complexity of different EAs which are constructed by
different algorithmic component parts? How to show the
time complexity of a given EA which is used in the differ-
ent kind of problems? What is the relation between the
time complexity and the precision of ε−optimal solution?
How to classify definitely both the EA-hard problems and
the EA-easy problems? Why is it important to research
further the computational dynamics properties and expla-
nations associated with the time complexity of EAs? More
essential, whether there is a kind of EAs which can be used
to solve(or under the sense of ε−optimum) a NP-problem
within the polynomial time theoretically or not? All these
problems are well worth being investigated in the field of the
time complexity of EAs in the future.
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